Solving with the SIMPLEX:

•	function: Max subject to:	Z = x1 +	+ 2 x2	
	2x ₁	$+4x_2 \leq 20$)	
	x ₁	+ x ₂ ≤8		
	and $x_1 x_2$	≥ 0		
	Z- x1-2x2	=	: 0	
	$2x_1 + 4x_2 + S1$	2	≤ 20	
	$x_1 + x_2 + S$	2 -	≤ 8	
and	x ₁ x ₂ S1 S2 ≥	: 0		

			z	x1	x2	s1	s2	RHS	racio
	R0	z	1	-1	-2	0	0	0	-
R1*1/4	R1	s1	0	2	4	1	0	20	5
	R2	s2	0	1	1	0	1	8	8
-									_
_			z	x1	x2	s1	s2	RHS	racio
R0-(-2)*R1	RO	z	1	0	0	0.5	0	10	-
	R1	x2	0	0.5	1	0.25	0	5	10
R2-(1)*R1	R2	s2	0	0.5	0	-0.25	1	3	6
-									
non-basic va	riables:	x1	s1		basic va	riables:	x2	s2	

Having a non-basic variable with a coeff of zero in R0 is indicative of multiple solutions. Solution A: (x1, x2) = (0, 5) and Z= 10.

we now force x1 to enter the basis we'll see that the solution will lead to the same Z value

			z	x1	x2	s1	s2	RHS
	RO	z	1	0	0	0.5	0	10
R1-(0.5)*R2	R1	x2	0	0	1	0.5	-1	2
R2*2	R2	x1	0	1	0	-0.5	2	6

Solution B: (x1, x2, s1, s2) = (2, 6, 0, 0) and Z= 10

Solution A: (x1, x2, s1, s2) = (0, 5, 0,3) and Z= 10.

Exercise 3

lf

Objectiv	e function: Ma subject to:	x: Z = x	x ₁ + x ₂	
	$x_1 + x_2 \le 4$			
	$2 x_1 + x_2 \le 6$			
	$x_1 + 2 x_2 \le 6$			
and	$x_1 x_2 \geq 0$			
	Z - x1 - x2		= 0	
	x1 + x2 + S2	1	≤ 4	
	2 x1 + x2	+S2	≤ 6	
	x1 + 2 x2	+S3	≤ 6	
and	x ₁ x ₂ S1 S2	S3 ≥0		

Solving with the SIMPLEX:

Tie in entering variable: arbitrairy choice - let's choose x1

		itering v								
	1		Z	x1	x2	s1	s2	s3	RHS	racio
	RO	z	1	-1	-1	0	0	0	0	-
	R1	s1	0	1	1	1	0	0	4	4
	R2	s2	0	2	1	0	1	0	6	3
	R3	s3	0	1	2	0	0	1	6	6
			z	x1	x2	s1	s2	s3	RHS	
	RO	z	1							
	R1	s1	0							
R2*1/2	R2	X1	0	1	0.5	0	0.5	0	3	
	R3	s3	0							
	Tie in le	aving va	riable: d	arbitrair	y choice	- let's ch	oose s1			
		-	z	x1	x2	s1	s2	s3	RHS	racio
	R0	z	1	0	-0.5	0	0.5	0	3	-
	R1	s1	0	0	0.5	1	-0.5	0	1	2
	R2	X1	0	1	0.5	0	0.5	0	3	6
	R3	s3	0	0	1.5	0	-0.5	1	3	2
			z	x1	x2	s1	s2	s3	RHS	
	RO	z	1							
R1*2	R1	X2	0	0	1	2	-1	0	2	
	R2	X1	0							
	R3	s3	0							
			z	x1	x2	s1	s2	s3	RHS	
R0-(-0.5)*R1	RO	z	1	0	0	1	0	0	4	
	R1	X2	0	0	1	2	-1	0	2	
R2-(0.5)*R1	R2	X1	0	1	0	-1	1	0	2	
R3-(1.5)*R1	R3	s3	0	0	0	-3	1	1	0	

Tie in leaving variable leads to a basic variable =0 in the next tableau (S3), thus we're in the presence of a degenerate solution

Objective	function: subject to:		$Z = x_1 +$	• x ₂
		x ₁	≤ 10	
		x ₁ - 3 x ₂	≤ 15	
		x ₁ - x ₂	≤ 20	
and	$x_1 x_2 \geq 0$			
	Z- x1-	x2	=	0
	x1	+ S1	<u> </u>	i 10
	x1 - 3	x2 +5	52 ≤	15
	x1 -	x2	+S3 ≤	£ 20
and	x ₁ x ₂ S1	S2 S3	≥0	

Solving with the SIMPLEX:

Tie in entering variable: arbitrairy choice - let's choose x1

			z	x1	x2	s1	s2	s3	RHS	racio		
	R0	z	1	-1	-1	0	0	0	0	-		
	R1	X1	0	1	0	1	0	0	10	10		
	R2	s2	0	1	-3	0	1	0	15	15		
	R3	s3	0	1	-2	0	0	1	20	20		
				-	-			-				
			z	x1	x2	s1	s2	s3	RHS	racio		
RO-(-1)*R1	R0	z	1	0	-1	1	0	0	10	-		
	R1	x1	0	1	0	1	0	0	10	-		
R2-(1)*R1	R2	s2	0	0	-3	-1	1	0	5	-1.7		
R3-(1)*R1	R3	s3	0	0	-2	-1	0	1	10	-5		

The 2nd entering variable is x2 (please note all coeff. in this column are either negative or zero, a sign we might have problems with the min racio test. Then we confirm we do not meet the min racio test criteria: choosing the smallest positive value (all values are either zero or negative). Thus we are in the presence of an ilimited solution and we say we have an unbound problem

Objective function: Min: $Z = 2 x_1 - 3 x_2 - 4 x_3$ subject to:
$x_1 + 5x_2 - 3x_3 \le 15$
$x_1 + x_2 + x_3 \le 11$
$5 x_1 - 6 x_2 + x_3 \le 4$
and $x_1 x_2 x_3 \ge 0$
Z - 2x1 + 3x2 + 4x3 = 0
$x1 + 5 x2 - 3 x3 + S1 \leq 15$
$x1 + x2 + x3 + S2 \leq 11$
$5 x1 - 6 x2 + x3 + S_{2}^{2} \le 4$
and $x_1 x_2 x_3 S1 S2 S3 \ge 0$

Please note we will solve this as minimization problem, thus we'll have to reverse the optimality and entering var. criteria

In forestry problems it is not common to get a negative value for the objective function, but it is not impossible. After the class I got thinking and the problem could be, for example, related to the minimizing the temperature so that a certain bacteria wouldn't be able to replicate.

Solving with the SIMPLEX:

Because the problem is soved as a minimization problem, we'll choose as entering variable the one with the biggest positive value (x3). If we were maximizing the choice would fall on the one with the smallest negative value. The criteria for the min racio test remains unchanged!

					_				_		1.
			Z	x1	x2	x3	s1	s2	s3	RHS	racio
RO-(-1)*R1	RO	z	1	-2	3	4	0	0	0	0	-
	R1	s1	0	1	5	-3	1	0	0	15	-5
R2-(1)*R1	R2	s2	0	1	1	1	0	1	0	11	11
R3-(1)*R1	R3	s3	0	5	-6	1	0	0	1	4	4
											_
			z	x1	x2	x3	s1	s2	s3	RHS	racio
R0-(4)*R3	RO	z	1	-22	27	0	0	0	-4	-16	-
R1-(-3)*R3	R1	s1	0	16	-13	0	1	0	3	27	-2
R2-(1)*R3	R2	s2	0	-4	7	0	0	1	-1	7	1
	R3	x3	0	5	-6	1	0	0	1	4	-1
	The next	entering v	ariable is J	X2 (bigges	t positive	value) and	the leavir	ng var is S2			
			z	x1	x2	x3	s1	s2	s3	RHS	
	RO	z	1								
	R1	s1	0								
R2*1/7	R2	x2	0	-0.6	1	0	0	0.1	-0.1	1	
	R3	x3	0								
											_
			z	x1	x2	x3	s1	s2	s3	RHS	
R0-(27)*R2	RO	z	1	-6.6	0	0	0	-3.9	-0.1	-43	
R1-(-13)*R2	R1	s1	0	8.6	0	0	1	1.9	1.1	40	
	R2	x2	0	-0.6	1	0	0	0.1	-0.1	1	
R3-(-6)*R2	R3	x3	0	1.6	0	1	0	0.9	0.1	10	

There are no more positive coeff in R0, thus we've reached the optimal solution is (x1, x2, x3, S1, S2, S3) = (0, 1, 10, 40, 0, 0) and Z = -43. All resources were used for s2 and s3 but 40 resource units were left unused for the resource represented by constraint 1 (S1 = 40)

Solving with the SIMPLEX:

Objective function: Max: $Z = 10 x1 + 30 x2$				z	x1	x2'	s1	s2	s3	RHS	racio
subject to:	R0-(-1)*R1	R0	z	1	-10	30	0	0	0	0	-
x ₁ ≤ 15		R1	s1	0	1	0	1	0	0	15	15
$x_1 - x_2 \le 20$	R2-(1)*R1	R2	s2	0	1	1	0	1	0	20	20
$-3 x_1 + x_2 \ge -30$	R3-(1)*R1	R3	s3	0	3	1	0	0	1	30	10
and $x_1 \ge 0$ $x_2 \le 0$	•			-	-				-	-	
				z	x1	x2'	s1	s2	s3	RHS	
solve the negative RHS:	[RO	z	1							
$3 x_1 - x_2 \leq 30$		R1	s1	0							
		R2	s2	0							
solve the nonpositive x2:	R3*1/3	R3	x1	0	1	0.3	0	0	0.3	10	
$x2' = -x2$ with $x2' \ge 0$				-	-		-	-	-		•
			-	z	x1	x2'	s1	s2	s3	RHS	
the new problem will be:	R0-(-10)*R3	R0	z	1	0	33.3	0	0	3.3	100	
	R1-(1)*R3	R1	s1	0	0	-0.3	1	0	-0.3	5	
Objective function: Max: $Z = 10 \times 1 - 30 \times 2^{1}$	R2-(1)*R3	R2	s2	0	0	0.7	0	1	-0.3	10	
subject to:		R3	x1	0	1	0.3	0	0	0.3	10	
x ₁ ≤ 15											
$x_1 + x_2' \le 20$				0							51, S2, S3) =
$3 x_1 + x_{2'} \le 30$									0. All resour		sed for constraints :
and $x1 x2' \ge 0$			1 = 5, S2 =				i anasca j			Seried by	construints .

the standard problem for the new model:

Z - 10 x1 + 30 x2'

	x ₁	+S1	≤ 15
	x ₁ + x ₂ '	+s2	≤ 20
	3 x ₁ + x ₂ '	+\$3	≤ 30
and	x1 x	2' S1 S2	S3≥0

Solution to the real problem (x1, x2, S1, S2, S3) = (10, 0, 5, 10, 0), Z = 100

Solving with the SIMPLEX:

The entering variable is X2' (negative value) and the leaving var is S2

		The entering	vuriuble is	s Zz (negu	llive vulue) unu the	euving vu	11 15 52					
Objective function: Max: Z = - x2				z	x1	x2'	x3⁺	x3 ⁻	s1	s2	s3	RHS	racio
subject to:		RO	z	1	0	-1	0	0	0	0	0	0	-
$x_1 + x_2 + x_3 \le 100$		R1	s1	0	1	-1	1	-1	1	0	0	100	-100
x1 - 5 X2 ≤ 40		R2	s2	0	1	5	0	0	0	1	0	40	8
x ₃ ≥ -10		R3	s3	0	0	0	-1	1	0	0	1	10	-
and $x_1 \ge 0$ $x_2 \le 0$ x_3 unbounded													
				z	x1	x2'	x3+	x3-	s1	s2	s3	RHS	
solve the negative RHS:		RO	z	1									
$-x_3 \leq 10$		R1	s1	0									
	R2*1/5	R2	s2	0	0.2	1	0	0	0	0.2	0	8	8
solve the nonpositive x2:		R3	s3	0									
$x2' = -x2$ with $x2' \ge 0$													•
				z	x1	x2'	x3+	x3-	s1	s2	s3	RHS	
solve the unbounded x3: R0-(-	-1)*R2	RO	z	1	0.2	0	0	0	0	0.2	0	8	
$x3 = X3^{+} - X3^{-}$ R1-(-	-1)*R2	R1	s1	0	1.2	0	1	-1	1	0.2	0	108	
		R2	x2'	0	0.2	1	0	0	0	0.2	0	8	
the standard problem for the new model:		R3	s3	0	0	0	-1	1	0	0	1	10	
Z + x2 -> Z -x2' = 0													
$x1 - x2' + X3^{+} - X3^{-} + S1 = 100$		There are no	more neg	ative coef	f in RO, thu	is we've re	ached the	optimal s	olution:				
x1 + 5 x2' + S2 = 40			(x1, x2', .	X3+, X3-,S	1, S2, S3) =	= (0, 8, 0, 0), 108, 0, 1	0) and	Z =8				
$-X3^{+} + X3^{-} + S3 = 10$		Please note	hat: since	? x2' = -x2	and X3 = >	(3+ - x3-, t	hen x2 = -8	8 and X3 =	0; the sol	ution for the	original pi	roblem is:	

x1 x2' x3⁺ X3⁻ S1 S2 S3 \ge 0 and

> Not all resources were used for constraints 1 and 3 (108 and 10 units of each resource were respectively left unused: S1 =108 and S3 = 10)

(x1, x2, X3,S1, S2, S3) = (0, -8, 0, 108, 0, 10) and Z = -X2, Z = -(-8) => Z = 8

Solving with the SIMPLEX:

Objective function: Min: $Z = 4 \times 1 + 2 \times 2$ subject to: $2 \times 1 - x2 \ge 4$ $x1 + x2 \ge 5$ and $x_1 + x2 \ge 0$	Bec bigg una
$Z = 4 x_1 + 2 x_2 + M a_1 + M a_2$ $2 x_1 - x_2 - S_1 + a_1 = 4$ $x_1 + x_2 - S_2 + a_2 = 5$ and $x_1, x_2, S_1, S_2, a_1, a_2 \ge 0$	R1*1/2

cause this is a minimization problem the selection criteria for the entering variable is finding the gest positive value in R0, thus X1 is the entering variable. The criteria for the leaving variable remains altered

		Z	x1	x2	s1	s2	a1	a2	RHS
RO	Min z	1	3M - 4	-2	-M	-M	0	0	9M
R1	a1	0	2	-1	-1	0	1	0	4
R2	a2	0	1	1	0	-1	0	1	5
		-	v1	v2	د1	c7	21	22	RHC

racio

2 5

_			Z	x1	x2	s1	s2	a1	a2	RHS
	RO	Min z								
R1*1/2	R1	x1	0	1	-0.5	-0.5	0	0.5	0	2
	R2	a2	0							

Where	a1 = 4 - 2x1 + x2 + S1
	a2 = 5 - x1 - x2 + S2

x2 s2 a2 RHS z x1 **s1** a1 R0-(3M - 4)*R1 R0 Min z 1 0 -4 +3/2M 1/2M - 2 -3/2M + 2 0 3M +8 -M R1 R1*1/2 x1 0 1 -0.5 -0.5 0 0.5 0 2 R2 a2 R2-(1)*R1 0 0 1.5 0.5 -1 -0.5 1 3

Replacing in the OF:

Min Z = $4x_1 + 2x_2 + M(4 - 2x_1 + x_2 + S_1) + M(5 - x_1 - x_2 + S_2)$ Min Z = $4x_1 + 2x_2 + 4M - 2Mx_1 + Mx_2 + MS_1 + 5M - Mx_1 - Mx_2 + MS_2$ Min Z = $4x_1 - 2Mx_1 - Mx_1 + 2x_2 + Mx_2 - Mx_2 + MS_1 + MS_2 + 4M + 5M$ Min Z = $4 x_1 - 3Mx_1 + 2 x_2 + MS_1 + MS_2 + 9M$ Min Z = $(4 - 3M) x_1 + 2 x_2 + MS_1 + MS_2 + 9M$ Z - (4 - 3M) x1 - 2 x2 - MS1- MS2 = 9M

RO-(3M - 4)*R1:

x1 (3M-4)-(3M-4)*1=0 3M-4-3M+4 = 3M-3M-4+4=0

 x_2 -2-(3M - 4)*(-0.5) = -2 -(- 3/2M + 2) = -4 +3/2M

- $-M (3M 4)^* (-0.5) = -M (-3/2M + 2) = -M + 3/2M 2 = 1/2M 2$
- s2 -M (3M -4)* (0) = M
- a1 0 (3M 4) * (0.5) = -3/2M + 2
- $a_2 = 0 (3M 4) * (0) = 0$
- RHS 9M (3M 4)*(2) = 9M 6M + 8 = 3M +8

We haven't reached the optimal solution because there are still 2 positive coeff (x^2 and S^1), so we

choose the biggest positive one

Exercise 9 (cont.)

Solving with the SIMPLEX:

R0

R1

R2

	Z	x1	x2	s1	s2	a1	a2	RHS	racio
Min z	1	0	-4 +3/2M	1/2M - 2	-M	-3/2M + 2	0	3M +8	-
x1	0	1	-0.5	-0.5	0	0.5	0	2	-4
a2	0	0	1.5	0.5	-1	-0.5	1	3	2
					•				1

-			Z	x1	x2	s1	s2	a1	a2	RHS
	RO	Min z	1							
	R1	x1	0							
R2*2/3	R2	x2	0	0	1	0.3	-0.7	-0.3	0.7	2

			Z	x1	x2	s1	s2	a1	a2	RHS
R0-(-4+3/2M)*R2	RO	Min z	1	0	0	-0.66667	-8/3	-M+2/3	8/3-M	16
R1-(-0.5)*R2	R1	x1	0	1	0	-0.3	-0.3	0.3	0.3	3
	R2	x2	0	0	1	0.3	-0.7	-0.3	0.7	2

RO-(3M - 4)*R1:

x1

0

0

х2

- (1/2M 2) (-4+3/2M)*1/3 = 1/2M-2 (-4/3+2/3M*1/3) = (-6+4)/2 = -2/3s1
- M (-4+3/2M)*(-2/3) = -M ((4*2)/3 3/2*2/3M) = -M 8/3 +M = -8/3 s2
- -3/2M + 2 (3/2M 4)*(-1/3) = -3/2M + 2 (-3/2*1/3M + 4/3) = -3/2M + 2 + 1/2M 4/3 = -M + 2/3 a1
- 0 (3/2M 4)*(2/3) = -(3/2*2/3M-4*2/3) = -(M-8/3) = 8/3-M а2
- 3M +8 (3/2M-4)*(2) = 3M +8 (3M -8) = 3M 3M + 8 + 8 = 16 RHS

There are no more positive coeff in R0, thus we've reached the optimal solution:

(x1, x2, S1, S2) = (3, 2, 0, 0) and Z = 16

			entering							
Max: $Z = 3x_1 + 2x_2$	basic var	Z	x1	x2'	x2''	s1	s2	RHS	(x1, x2',x2'',s1,s2) = 0,0,0,9,9)	
Subject to: $2x_1 + x_2 \le 9$	Z	1	-3	-2	2	0	0	0	z= 0	
$x_1 + 2 x_2 \leq 9$	leaving s1	0	2	1	-1	1	0	9	4.5	
	s2	0	1	2	-2	0	1	9	9 A: (x1,x2)= ((0,0)
$x_1, \ge 0$; x_2 unbounded				entering		-			-	
	basic var	Z	x1	x2'	x2''	s1	s2	RHS	(x1, x2',x2'',s1,s2) = (4.5,0,0,0,4.5)	
x2 = x2' - x2'' x1, x2', x2'' ≥ 0	Z	1	0	-0.5	0.5	1.5	0	13.5	z= 13.5	
	x1	0	1	0.5	-0.5	0.5	0	4.5	9	
Max: $Z = 3x_1 + 2(x_2'-x_2'')$	leaving s2	0	0	1.5	-1.5	-0.5	1	4.5	3 B: (x1,x2)= (4	4.5,0)
Subject to: $2x_1 + (x_2'-x_2'') \le 9$									-	
$x_1 + 2(x_2'-x_2'') \le 9$	basic var	Z	x1	x2'	x2''	s1	s2	RHS	(x1, x2',x2'',s1,s2) = (3,3,0,0,0)	
	z	1	0	0	0	1.3333	0.3333	15	z= 15	
$x_1 x_2' x_2'' \ge 0$	x1	0	1	0	0	0.6667	-0.333	3	optimal solution ! C: (x1,x2)= (3	3,3)
	x2'	0	0	1	-1	-0.333	0.6667	3	1	
Max: $Z = 3x_1 + 2x_2' - 2x_2''$										
Subject to: $2x_1 + x_2' - x_2'' \le 9$ $x_1 + 2x_2' - 2x_2'' \le 9$									Solution to the real problem	
1 2 2										
$x_1 x_2' x_2'' \ge 0$									x2=x2'-x2''	
									x2=3-0	
Max: Z - $3x_1 - 2x_2' + 2x_2''$										
Subject to: $2x_1 + x_2' - x_2'' + S1 = 9$									(x1, x2,s1,s2) = (3,3,0,0)	
$x_1 + 2x_2' - 2x_2'' + S2 = 9$										
1 2 2										

 $x_1 x_2' x_2''$ S1 S2 ≥ 0

Max: $Z = 3x_1 + 4x_2$				enterin	g					_
Subject to: $x_1 + x_2 \le 10$	basic var	Z	x1	x2	s1	s2	s3	s4	RHS	1, x2,s1,s2, s3,s4) = (0,0,10,60,15,5)
$5 x_1 + 12 x_2 \le 60$	z	1	-3	-4	0	0	0	0	0	z= 0
$x_1 + 3 x_2 \le 15$	s1	0	1	1	1	0	0	0	10	10 A:
$x_2 \leq 5$	leaving s2	0	5	12	0	1	0	0	60	5 (x1,x2)= (0,0)
x ₁ , x ₂ ≥ 0	s3	0	1	3	0	0	1	0	15	5
A1, A2= 0	s4	0	0	1	0	0	0	1	5	5
Max: $Z - 3x_1 - 4x_2$	10		enterin							1
$x_1 + x_2 + s1$ 5 $x_1 + 12 x_2 + s2$	= 10 basic var = 60	Z	x1	x2	s1	s2	s3	s4		1, x2,s1,s2, s3,s4) = (0,5,5,0,0)
	= 15 z	1	-1.333	0	0	0.333	0	0	20	z= 20
$x_1 + 5 + x_2 + s4$	= 15 leaving s1	0	0.583	0	1	-0.083	0	0	5	8.57143 B:
Ζ -	×2	0	0.417	1	0	0.083	0	0	5	12 (x1,x2)= (0,5)
x_1, x_2 S1 s2 s3 s4 ≥ 0	s3	0	-0.25	0	0	-0.25	1	0	0	-
	s4	0	-0.417	0	0	-0.083	0	1	0]-
	basic var	Z	x1	x2	s1	s2	s3	s4	RHS	1, x2,s1,s2, s3,s4) = (8.6,1.4,0,0,2.1,3.6)
	z	1	0	0	2.286	0.143	0	0	31.4	z= 31.428571
	x1	0	1	0	1.714	-0.143	0	0	8.6	С:
	x2	0	0	1	-0.714	0.143	0	0	1.4	(x1,x2)= (8.6,1.4)
	s3	0	0	0	0.429	-0.286	1	0	2.1	
	s4	0	0	0	0.714	-0.143	0	1	3.6	optimal solution!!
		ing the tie i		-						
		leaving vari				_				
	the prob	lem. I´ve ch	nosen to t	ake out	the slac	k corresp	onding	to the bi	inding	

constraint (one of the two constraints that determine the optimal cornerpoint). Of course I only knew this because I looked at the graph. For more complex problems when graphing is not possible we choose arbitrarily.

Exercise 12 (cont.)				enterin	g					_	
		Z	x1	x2	s1	s2	s3	s4	RHS	1, x2,s1,s2	2, s3,s4) = (0,0,10,60,15,5)
chosing a different leaving variable:	Z	1	-3	-4	0	0	0	0	0		z= 0
	s1	0	1	1	1	0	0	0	10	10	A:
	s2	0	5	12	0	1	0	0	60	5	(x1,x2)= (0,0)
	s3	0	1	3	0	0	1	0	15	5	
	leaving s4	0	0	1	0	0	0	1	5	5	
			enterin	a							
		Z	x1	s x2	s1	s2	s3	s4	RHS	1 1 1 1 1 1 1	2, s3,s4) = (0,5,5, <mark>0,0</mark> ,0)
	Z	1	-3	0	0	0	0	4	20	1, 12,31,32	z = 20
look what happens if we force s2	s1	0	-5	0	1	0	0	-1	5	5	B:
or s3 to leave the basis (despite	s2	0	5	0	0	1	0	-12	0	0	(x1,x2)= (0,5)
these have ratios of 0, shouldn't	leaving s3	0	1	0	0	0	1	-3	0	0 0	degenerate solution because
even be candidates to leave):	x2	0	0	1	0	0	0	1	5	-	we have 2 basic variables =0!
		-			•		•			1	Still at point B
								enterin	g		
		Z	x1	x2	s1	s2	s3	s4	RHS	1, x2,s1,s2	2, s3,s4) = (0,5,5, <mark>0,0</mark> ,0)
	Z	1	0	0	0	0	3	-5	20	1	z= 20
	s1	0	0	0	1	0	-1	2	5	2.5	В:
	leaving s2	0	0	0	0	1	-5	3	0	0	(x1,x2)= (0,5)
	x1	0	1	0	0	0	1	-3	0	0	degenerate solution because
	x2	0	0	1	0	0	0	1	5	5	we have 2 basic variables =0!
											Still at point B
				•			enterin		-	-	
		Z	x1	x2	s1	s2	s3	s4		1, x2,s1,s2	2, s3,s4) = (0,5,5, <mark>0,0</mark> ,0)
	z	1	0	0	0	1.667	-5.333	0	20		z= 20
	leaving s1	0	0	0	1	-0.667	2.333	0	5	2.14286	
	s4	0	0	0	0	0.333	-1.667	1	0	0	(x1,x2)= (0,5)
	x1	0	1	0	0	1	-4	0	0	0	degenerate solution because
	x2	0	0	1	0	-0.333	1.667	0	5	3	we have 2 basic variables =0!
											Still at point B

1, x2,s1,s2, s3,s4) = (8.6,1.4,0,0	RHS	s4	s3	s2	s1	
z= 31.428571	31.4	0	0	0.143	2.286	
C:	2.1	0	1	-0.286	0.429	
(x1,x2)=	3.6	1	0	-0.143	0.714	
7	8.6	0	0	-0 1/13	1 714	

Exercise 12 (cont.)

optimal solution!!

1 0 0 z s3 0 0 0 s4 0 0 0 x1 0 1 0 1.714 -0.143 0 0 8.6 x2 0 0 1 -0.714 0.143 0 0 1.4

x2

x1

z



