Exercise 3

Objective function: Max: $Z=x 1+2 \times 2$ subject to:

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \leq 20 \\
x_{1}+x_{2} & \leq 8
\end{aligned}
$$

and

$$
\mathrm{x}_{1} \quad \mathrm{x}_{2} \geq 0
$$

Z-x1-2 x2
$=0$
$2 x_{1}+4 x_{2}+S 1$
≤ 20
$x_{1}+x_{2}+S 2$
≤ 8
and
$\mathrm{x}_{1} \quad \mathrm{x}_{2} \mathrm{~S} 1 \quad \mathrm{~S} 2 \geq 0$

Solving with the SIMPLEX:

			z	x1	x2	s1	s2	RHS
R1*1/4	R0	2	1	-1	-2	0	0	0
	R1	s1	0	2	4	1	0	20
	R2	s2	0	1	1	0	1	8

racio

$R 0-(-2) * R 1$			z	x1	x2	s1	s2	RHS
	R0	z	1	0	0	0.5	0	10
$R 2-(1) * R 1$	R1	x2	0	0.5	1	0.25	0	5
	R2	s2	0	0.5	0	-0.25	1	3

racio 10
on-basic variables: x1

Having a non-basic variable with a coeff of zero in RO is indicative of multiple solutions.
Solution A: $(x 1, x 2)=(0,5)$ and $Z=10$.
If
we now force $x 1$ to enter the basis we'll see that the solution will lead to the same Z value

Solution B: $(x 1, x 2, s 1, s 2)=(2,6,0,0)$ and $Z=10$

Solution A: $(x 1, x 2, s 1, s 2)=(0,5,0,3)$ and $Z=10$

Exercise 4

Objective function: $\operatorname{Max}: \quad Z=x_{1}+x_{2}$ subject to:
$x_{1}+x_{2} \leq 4$
$2 x_{1}+x_{2} \leq 6$
$x_{1}+2 x_{2} \leq 6$
and
$\mathrm{x}_{1} \quad \mathrm{x}_{2} \geq 0$

$$
\begin{array}{rlr}
Z-x 1-x 2 & & =0 \\
x 1+x 2+S 1 & \leq 4 \\
2 x 1+x 2+S 2 & \leq 6 \\
x 1+2 x 2 & +S 3 & \leq 6
\end{array}
$$

and

$$
\begin{array}{lllll}
x_{1} & x_{2} & \text { S1 } & \text { S2 } & S 3 \geq 0
\end{array}
$$

Tie in leaving variable leads to a basic variable $=0$ in the next tableau (S3), thus we're in the presence of a degenerate solution

Solving with the SIMPLEX:
Tie in entering variable: arbitrairy choice - let's choose x1

		\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{s 3}$	RHS
R0	\mathbf{z}	1	-1	-1	0	0	0	0
R1	$\mathbf{s 1}$	0	1	1	1	0	0	4
R2	$\mathbf{s 2}$	0	2	1	0	1	0	6
R3	$\mathbf{s 3}$	0	1	2	0	0	1	6

racio

4
3
6

			z	x1	x2	s1	s2	s3	RHS
R2*1/2	R0	z	1						
	R1	s1	0						
	R2	X1	0	1	0.5	0	0.5	0	3
	R3	s3	0						

Tie in leaving variable: arbitrairy choice - let's choose s1

		\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{s 3}$	RHS
R0	\mathbf{z}	1	0	-0.5	0	0.5	0	3
R1	$\mathbf{s 1}$	0	0	0.5	1	-0.5	0	1
R2	$\mathbf{X 1}$	0	1	0.5	0	0.5	0	3
R3	$\mathbf{s 3}$	0	0	1.5	0	-0.5	1	3

R1*2			z	x1	x2	s1	s2	s3	RHS
	R0	2	1						
	R1	X2	0	0	1	2	-1	0	2
	R2	X1	0						
	R3	s3	0						

			z	x1	x2	s1	s2	s3	RHS
$R O-(-0.5) * R 1$	R0	z	1	0	0	1	0	0	4
	R1	X2	0	0	1	2	-1	0	2
$R 2-(0.5) * R 1$	R2	X1	0	1	0	-1	1	0	2
$R 3-(1.5) * R 1$	R3	s3	0	0	0	-3	1	1	0

Exercise 5

Objective function: $\quad \mathrm{Max}: \quad \mathrm{Z}=\mathrm{x}_{1}+\mathrm{x}_{2}$ subject to:

$$
\begin{array}{ll}
x_{1} & \leq 10 \\
x_{1}-3 & x_{2} \leq 15 \\
x_{1}-\quad x_{2} \leq 20
\end{array}
$$

and
$x_{1} \quad x_{2} \geq 0$
Z-x1-x2
$=0$
$\mathrm{x} 1 \quad+\mathrm{S} 1 \leq 10$
$\mathrm{x} 1-3 \mathrm{x} 2+\mathrm{S} 2$ ≤ 15
x1-x2 +S3 ≤ 20
and
$x_{1} \quad x_{2}$ S1 S2 S3 ≥ 0

Solving with the SIMPLEX:

Tie in entering variable: arbitrairy choice - let's choose x1

		\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{s 3}$	RHS
R0	\mathbf{z}	1	-1	-1	0	0	0	0
R1	X 1	0	1	0	1	0	0	10
R2	s 2	0	1	-3	0	1	0	15
R3	s 3	0	1	-2	0	0	1	20

racio

racio
-1.7
-5

The 2 nd entering variable is $\times 2$ (please note all coeff. in this column are either negative or zero, a sign we might have problems with the min racio test. Then we confirm we do not meet the min racio test criteria: choosing the smallest positive value (all values are eithe zero or negative). Thus we are in the presence of an ilimited solution and we say we have an unbound problem

Exercise 6

Objective function: Min: $Z=2 x_{1}-3 x_{2}-4 x_{3}$ subject to:

$$
\begin{aligned}
x_{1}+5 x_{2}-3 x_{3} & \leq 15 \\
x_{1}+x_{2}+x_{3} & \leq 11 \\
5 x_{1}-6 x_{2}+x_{3} & \leq 4
\end{aligned}
$$

and

$$
x_{1} x_{2} x_{3} \geq 0
$$

$$
\begin{aligned}
Z-2 \times 1+3 \times 2+4 \times 3 & \\
x 1+5 \times 2-3 \times 3+S 1 & \leq 15 \\
x 1+x 2+x 3+S 2 & \leq 11 \\
5 \times 1-6 \times 2+x 3 & \leq 4
\end{aligned}
$$

$$
\text { and } \quad x_{1} x_{2} x_{3} \text { S1 S2 S3 } \geq 0
$$

Please note we will solve this as minimization problem, thus we'll have to reverse the optimality and entering var. criteria

In forestry problems it is not common to get a negative value for the objective function, but it is not impossible. After the class I got thinking and the problem could be, for example, related to the minimizing the temperature so that a certain bacteria wouldn't be able to replicate.

Solving with the SIMPLEX:

Because the problem is soved as a minimization problem, we'll choose as entering variable the one with the biggest positive value (x3). If we were maximizing the choice would fall on the one with the smallest negative value. The criteria for the min racio test remains unchanged!

$R 0-(-1) * R 1$			z	x1	x2	x3	s1	s2	s3	RHS
	R0	Z	1	-2	3	4	0	0	0	0
	R1	s1	0	1	5	-3	1	0	0	15
R2-(1)*R1	R2	s2	0	1	1	1	0	1	0	11
$R 3-(1) * R 1$	R3	s3	0	5	-6	1	0	0	1	4

racio

$R 0-(4) * R 3$			2	x1	x2	x3	s1	s2	s3	RHS
	R0	Z	1	-22	27	0	0	0	-4	-16
R1-(-3)*R3	R1	s1	0	16	-13	0	1	0	3	27
R2-(1)*R3	R2	s2	0	-4	7	0	0	1	-1	7
	R3	x3	0	5	-6	1	0	0	1	4

$\begin{gathered} R 0-(27) * R 2 \\ R 1-(-13) * R 2 \end{gathered}$			z	x1	x2	x3	s1	s2	s3	RHS
	R0	z	1	-6.6	0	0	0	-3.9	-0.1	-43
	R1	s1	0	8.6	0	0	1	1.9	1.1	40
$R 3-(-6) * R 2$	R2	x2	0	-0.6	1	0	0	0.1	-0.1	1
	R3	x3	0	1.6	0	1	0	0.9	0.1	10

There are no more positive coeff in $R 0$, thus we've reached the optimal solution is ($x 1, x 2, x 3, S 1, S 2, S 3$) $=(0,1,10,40,0,0)$ and $Z=-43$. All resources were used for $s 2$ and s3 but 40 resource units were left unused for the resource represented by constraint 1 (S1 = 40)

Exercise 7

Objective function: \quad Max: $Z=10 x 1+30 x 2$ subject to:

$$
\begin{array}{cc}
x_{1} & \leq 15 \\
x_{1}- & x_{2} \leq 20 \\
-3 x_{1}+x_{2} & \geq-30
\end{array}
$$

and

$$
x_{1} \geq 0 \quad x 2 \leq 0
$$

solve the negative RHS:

$$
3 x_{1}-x_{2} \leq 30
$$

solve the nonpositive $\times 2$:

$$
x 2^{\prime}=-x 2 \text { with } \quad x 2^{\prime} \geq 0
$$

the new problem will be:
Objective function: Max: $\quad Z=10 \times 1-30 \times 2^{\prime}$ subject to:

$$
\begin{array}{cc}
x_{1} & \leq 15 \\
x_{1}+x_{2}^{\prime} & \leq 20 \\
3 x_{1}+x_{2^{\prime}} & \leq 30
\end{array}
$$

and

$$
x 1 \quad x 2^{\prime} \geq 0
$$

the standard problem for the new model:

$$
\begin{aligned}
& Z-10 x 1+30 \times 2 ' \\
& \mathrm{x}_{1}+\mathrm{S} 1 \leq 15 \\
& x_{1}+x_{2}^{\prime}+s 2 \leq 20 \\
& 3 x_{1}+x_{2}{ }^{\prime} \quad+53 \leq 30 \\
& \text { and } \\
& \text { x1 x2' S1 S2 S3 } \geq 0
\end{aligned}
$$

Solving with the SIMPLEX:

			z	x1	x2'	s1	s2	s3	RHS	racio
$R 0-(-1) * R 1$	R0	z	1	-10	30	0	0	0	0	
	R1	s1	0	1	0	1	0	0	15	15
R2-(1)*R1	R2	s2	0	1	1	0	1	0	20	20
R3-(1)*R1	R3	s3	0	3	1	0	0	1	30	10

		\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2 '}^{\prime}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{s 3}$	RHS
R0	\mathbf{z}	1						
R1	s 1	0						
	R2	s 2	0					

			z	x1	x2'	s1	s2	s3	RHS
$R 0-(-10) * R 3$	R0	z	1	0	33.3	0	0	3.3	100
$\begin{aligned} & R 1-(1) * R 3 \\ & R 2-(1) * R 3 \end{aligned}$	R1	s1	0	0	-0.3	1	0	-0.3	5
	R2	s2	0	0	0.7	0	1	-0.3	10
	R3	x1	0	1	0.3	0	0	0.3	10

There are no more negative coeff in R0, thus we've reached the optimal solution is $\left(x 1, x 2^{\prime}, S 1, S 2, S 3\right)=$ $(10,0,5,10,0)$ and $Z=100$. Please note that since $x 2^{\prime}=-x 2$ thus $x 2=0$. All resources were used for constraint 3 , but 5 and 10 resource units were left unused for the resources represented by constraints 1 and $2(S 1=5, S 2=10)$
Solution to the real problem $(x 1, x 2, S 1, S 2, S 3)=(10,0,5,10,0), Z=100$

Exercise 8

Objective function: Max: $Z=-x 2$

subject to:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 100 \\
x 1-5 x 2 & \leq 40 \\
x_{3} & \geq-10
\end{aligned}
$$

Solving with the SIMPLEX:

The entering variable is $X 2^{\prime}$ (negative value) and the leaving var is $S 2$

	\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}^{\mathbf{\prime}}$	$\mathbf{x 3}^{+}$	$\mathbf{x 3}^{-}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{s 3}$	RHS	
R0	\mathbf{z}	1	0	-1	0	0	0	0	0	0
R1	s 1	0	1	-1	1	-1	1	0	0	100
R2	s 2	0	1	5	0	0	0	1	0	40
R3	s 3	0	0	0	-1	1	0	0	1	10

and $\quad x_{1} \geq 0 \quad x 2 \leq 0 \quad x 3$ unbounded
solve the negative RHS:

$$
-x_{3} \leq 10
$$

solve the nonpositive $\times 2$:

$$
x 2^{\prime}=-x 2 \quad \text { with } \quad x 2^{\prime} \geq 0
$$

solve the unbounded $x 3$

$$
x 3=x 3^{+}-x 3^{-}
$$

the standard problem for the new model:

$$
Z+x 2 \quad->\quad Z-x 2^{\prime}=0
$$

$R O-(-1) * R 2$ R1-(-1)*R2			2	x1	x2'	x3+	x3-	s1	s2	s3	RHS
	R0	z	1	0.2	0	0	0	0	0.2	0	8
	R1	s1	0	1.2	0	1	-1	1	0.2	0	108
$R 1-(-1) * R 2$	R2	x2'	0	0.2	1	0	0	0	0.2	0	8
	R3	s3	0	0	0	-1	1	0	0	1	10

$$
x 1-x 2^{\prime}+X 3^{+}-X 3^{-}+51=100
$$

There are no more negative coeff in $R 0$, thus we've reached the optimal solution:

$$
x 1+5 \times 2^{\prime} \quad+S 2=40
$$

$$
\left(x 1, x 2^{\prime}, x 3+, x 3-, 51,52,53\right)=(0,8,0,0,108,0,10) \quad \text { and } \quad z=8
$$

$$
-\mathrm{X3} 3^{+}+\mathrm{X} 3^{-} \quad+\mathrm{S3}=10
$$

and $\quad x 1 \times 2^{\prime} x 3^{+}$X3 ${ }^{-}$S1 S2 S3 ≥ 0
Please note that: since $\times 2^{\prime}=-x 2$ and $x 3=x 3+-x 3$, then $x 2=-8$ and $x 3=0$; the solution for the original problem is:

$$
(x 1, x 2, x 3, S 1, S 2, S 3)=(0,-8,0,108,0,10) \text { and } Z=-X 2, Z=-(-8) \Rightarrow Z=8
$$

[^0] S1 =108 and S3 = 10)

Exercise 9

Objective function: \quad Min: $\quad Z=4 \times 1+2 \times 2$
subject to:

$$
\begin{gathered}
2 x 1-x 2 \geq 4 \\
x 1+x 2 \geq 5
\end{gathered}
$$

and

$$
x_{1} \quad x 2 \geq 0
$$

$$
\begin{aligned}
& Z=4 x_{1}+2 x_{2}+M a_{1}+M a_{2} \\
& 2 x_{1}-x_{2}-S_{1}+a_{1}=4 \\
& x_{1}+x_{2}-S_{2}+a_{2}=5
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, a_{1}, a_{2} \geq 0$

Where $a 1=4-2 \times 1+x 2+51$

$$
a 2=5-x 1-x 2+s 2
$$

Replacing in the OF:

Solving with the SIMPLEX:

Because this is a minimization problem the selection criteria for the entering variable is finding the biggest positive value in RO, thus X1 is the entering variable. The criteria for the leaving variable remains unaltered

	\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	a1	a2	RHS	
R0	Min z	1	$3 \mathrm{M}-4$	-2	-M	-M	0	0	9 M
R1	a1	0	$\mathbf{2}$	-1	-1	0	1	0	4
R2	a2	0	1	1	0	-1	0	1	5

5

			z	x1	x2	s1	s2	a1	a2	RHS
$R 1^{*} 1 / 2$	R0	Min 2								
	R1	x 1	0	1	-0.5	-0.5	0	0.5	0	2
	R2	a2	0							

			z	x1	x2	s1	s2	a1	a2	RHS
RO-(3M - 4)*R1	R0	Min z	1	0	$-4+3 / 2 \mathrm{M}$	1/2M - 2	-M	-3/2M + 2	0	3M + 8
R1*1/2	R1	x1	0	1	-0.5	-0.5	0	0.5	0	2
R2-(1)*R1	R2	a2	0	0	1.5	0.5	-1	-0.5	1	3

Min $Z=4 x_{1}+2 x_{2}+M\left(4-2 x_{1}+x_{2}+S_{1}\right)+M\left(5-x_{1}-x_{2}+S_{2}\right)$
Min $Z=4 x_{1}+2 x_{2}+4 M-2 M x_{1}+M x_{2}+M S_{1}+5 M-M x_{1}-M x_{2}+M S_{2}$
Min $Z=4 x_{1}-2 M x_{1}-M x_{1}+2 x_{2}+M x_{2}-M x_{2}+M S_{1}+M S_{2}+4 M+5 M$
Min $Z=4 x_{1}-3 M x_{1}+2 x_{2}+M S_{1}+M S_{2}+9 M$

$R O-(3 M-4) * R 1:$

$$
\begin{array}{ll}
x 1 & (3 M-4)-(3 M-4)^{*} 1=0 \quad 3 M-4-3 M+4=3 M-3 M-4+4=0 \\
x 2 & -2-(3 M-4)^{*}(-0.5)=-2-(-3 / 2 M+2)=-4+3 / 2 M \\
s 1 & -M-(3 M-4)^{*}(-0.5)=-M-(-3 / 2 M+2)=-M+3 / 2 M-2=1 / 2 M-2 \\
s 2 & -M-(3 M-4)^{*}(0)=-M \\
a 1 & 0-(3 M-4)^{*}(0.5)=-3 / 2 M+2 \\
a 2 & 0-(3 M-4)^{*}(0)=0 \\
\text { RHS } & 9 M-(3 M-4)^{*}(2)=9 M-6 M+8=3 M+8
\end{array}
$$

Exercise 9 (cont.)

choose the biggest positive one

Solving with the SIMPLEX:

		\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{a 1}$	a2	RHS
R0	Min z	1	0	$-4+3 / 2 \mathrm{M}$	$1 / 2 \mathrm{M}-2$	-M	$-3 / 2 \mathrm{M}+2$	0	$3 \mathrm{M}+8$
R1	$\mathbf{x 1}$	0	1	-0.5	-0.5	0	0.5	0	2
R2	$\mathbf{a 2}$	0	0	1.5	0.5	-1	-0.5	1	3

	\mathbf{z}	$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{a 1}$	$\mathbf{a 2}$	RHS	
	R0	Min z	1						
	R1	$\mathbf{x 1}$	0						
	R2	$\mathbf{x 2}$	0	0	1	0.3	-0.7	-0.3	0.7

			z	x1	x2	s1	s2	a1	a2	RHS
$R O-(-4+3 / 2 M) * R 2$	R0	Min z	1	0	0	-0.66667	-8/3	$-\mathrm{M}+2 / 3$	8/3-M	16
R1-(-0.5)*R2	R1	x1	0	1	0	-0.3	-0.3	0.3	0.3	3
	R2	x2	0	0	1	0.3	-0.7	-0.3	0.7	2

RO-(3M-4)*R1:

$x 1$	0			
$x 2$	0		$x 1$	$(1 / 2 M-2)-(-4+3 / 2 M)^{*} 1 / 3=1 / 2 M-2-\left(-4 / 3+2 / 3 M^{*} 1 / 3\right)=(-6+4) / 2=-2 / 3$
:---	:---			
$s 2$	$-M-(-4+3 / 2 M)^{*}(-2 / 3)=-M-\left(\left(4^{*} 2\right) / 3-3 / 2^{*} 2 / 3 M\right)=-M-8 / 3+M=-8 / 3$			
$a 1$	$-3 / 2 M+2-(3 / 2 M-4)^{*}(-1 / 3)=-3 / 2 M+2-\left(-3 / 2^{*} 1 / 3 M+4 / 3\right)=-3 / 2 M+2+1 / 2 M-4 / 3=-M+2 / 3$			
$a 2$	$0-(3 / 2 M-4)^{*}(2 / 3)=-\left(3 / 2^{*} 2 / 3 M-4^{*} 2 / 3\right)=-(M-8 / 3)=8 / 3-M$			
RHS	$3 M+8-(3 / 2 M-4)^{*}(2)=3 M+8-(3 M-8)=3 M-3 M+8+8=16$			

There are no more positive coeff in $R O$, thus we've reached the optimal solution:

$$
(x 1, x 2, S 1, S 2)=(3,2,0,0) \quad \text { and } \quad Z=16
$$

Exercise 11

Max: $\quad Z=3 x_{1}+2 x_{2}$
Subject to: $2 x_{1}+x_{2} \leq 9$
$x_{1}+2 x_{2} \leq 9$
$x_{1}, \geq 0 ; x_{2}$ unbounded
$x 2=x 2^{\prime}-x 2^{\prime \prime} \quad x 1^{\prime}, x 2^{\prime}, x 2^{\prime \prime} \geq 0$

Max: $\quad Z=3 x_{1}+2\left(x_{2}{ }^{\prime}-x_{2}{ }^{\prime \prime}\right)$
Subject to: $2 x_{1}+\left(x_{2}^{\prime}-x_{2}^{\prime \prime}\right) \leq 9$
$x_{1}+2\left(x_{2}-x_{2}{ }^{\prime \prime}\right) \leq 9$
$x_{1} \quad x_{2}{ }^{\prime} x_{2}{ }^{\prime \prime} \geq 0$
Max: $\quad Z=3 x_{1}+2 x_{2}{ }^{\prime}-2 x_{2}{ }^{\prime \prime}$
Subject to: $2 x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 9$

$$
x_{1}+2 x_{2}^{\prime}-2 x_{2}^{\prime \prime} \leq 9
$$

$x_{1} \quad x_{2}{ }^{\prime} x_{2}{ }^{\prime \prime} \geq 0$

Max: $\quad Z-3 x_{1}-2 x_{2}{ }^{\prime}+2 x_{2}{ }^{\prime \prime}$
Subject to: $2 x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}+S 1=9$

$$
x_{1}+2 x_{2}^{\prime}-2 x_{2}^{\prime \prime} \quad+S 2=9
$$

$\mathrm{x}_{1} \mathrm{x}_{2}^{\prime} \mathrm{x}_{2}^{\prime \prime} \mathrm{S} 1 \mathrm{~S} 2 \geq 0$

entering								
basic var								
z								

4.5
$A:(x 1, x 2)=(0,0)$
entering

basic var	z	x 1	$\mathrm{x} 2^{\prime}$	$\mathrm{x} 2^{\prime \prime}$	s 1	s 2	RHS
	z	1	0	-0.5	0.5	1.5	0
13.5							
x 1	0	1	0.5	-0.5	0.5	0	4.5
s 2	0	0	1.5	-1.5	-0.5	1	4.5

basic var	z	x1	x2'	x2"	s1	s2	RHS		
z	1	0	0	0	1.3333	0.3333	15		
$\times 1$	0	1	0	0	0.6667	-0.333	3	optimal solution! C: $(x 1, x 2)=$	$(3,3)$
x2'	0	0	1	-1	-0.333	0.6667	3		

Solution to the real problem
x2=x2'-x2"

$$
x 2=3-0
$$

$(x 1, x 2,51, s 2)=(3,3,0,0)$

Exercise 12

```
Max: \(\quad Z=3 x_{1}+4 x_{2}\)
Subject to: \(x_{1}+x_{2} \leq 10\)
    \(5 x_{1}+12 x_{2} \leq 60\)
    \(x_{1}+3 x_{2} \leq 15\)
        \(x_{2} \leq 5\)
```

$x_{1}, x_{2} \geq 0$

Max: $\quad Z-3 x_{1}-4 x_{2}$

$$
\begin{array}{rlr}
x_{1}+x_{2}+s 1 & =10 \\
5 x_{1}+12 x_{2}+s 2 & =60 \\
x_{1}+3 x_{2}+s 3 & =15 \\
x_{2}+s 4 & =5
\end{array}
$$

$$
x_{2}
$$

x_{1}, x_{2} S1 s2 s3 s4 ≥ 0

entering										$1, \mathrm{x} 2, \mathrm{~s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4)=\mid(0,0,10,60,15,5)$
		Z	x1	x2	s1	s2	s3	s4	RHS	
	Z	1	-3	-4	0	0	0	0	0	$z=0$
	s1	0	1	1	1	0	0	0	10	10 A:
leaving	s2	0	5	12	0	1	0	0	60	$5 \quad(x 1, x 2)=(0,0)$
	s3	0	1	3	0	0	1	0	15	5
	S4	0	0	1	0	0	0	1	5	5

entering

$x 2, s 1, s 2, s 3, s 4)=\mid(0,5,5,0,0)$
$z=20$
8.57143
12

basic var	z	$x 1$	$x 2$	$s 1$	$s 2$	$s 3$	$s 4$	RHS
z	1	0	0	2.286	0.143	0	0	31.4
x 1	0	1	0	1.714	-0.143	0	0	8.6
x 2	0	0	1	-0.714	0.143	0	0	1.4
s3	0	0	0	0.429	-0.286	1	0	2.1
s 4	0	0	0	0.714	-0.143	0	1	3.6

$, x 2, s 1, s 2, s 3, s 4)=\mid(8.6,1.4,0,0,2.1,3.6)$
$(x 1, x 2)=(8.6,1.4)$

When facing the tie in the leaving variable for the 1st table if we add chosen a different leaving variable it would have taken us longer (more tables) to solve the problem. I've chosen to take out the slack corresponding to the binding constraint (one of the two constraints that determine the optimal cornerpoint). Of course I only knew this because I looked at the graph. For more complex problems when graphing is not possible we choose arbitrarily.

Exercise 12 (cont.)

chosing a different leaving variable:
look what happens if we force s2 or s3 to leave the basis (despite these have ratios of 0 , shouldn't even be candidates to leave):

		entering								1, x2,s1,s2, s3,s4) =\|(0,0,10,60,15,5)	
		z	x1	x2	s1	s2	s3	s4	RHS		
	z	1	-3	-4	0	0	0	0	0		$\mathrm{z}=0$
	s1	0	1	1	1	0	0	0	10	10	A:
	s2	0	5	12	0	1	0	0	60	5	$(x 1, x 2)=(0,0)$
	s3	0	1	3	0	0	1	0	15	5	
leaving	54	0	0	1	0	0	0	1	5	5	

		entering							
		z	x1	x2	s1	s2	s3	s4	RHS
	z	1	-3	0	0	0	0	4	20
	s1	0	1	0	1	0	0	-1	5
	s2	0	5	0	0	1	0	-12	0
leaving	s3	0	1	0	0	0	1	-3	0
	x2	0	0	1	0	0	0	1	5

$1, \mathrm{x} 2, \mathrm{~s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4)$	$=\mid(0,5,5,0,0,0)$
z	$=20$

5 B:
$(x 1, x 2)=(0,5)$
degenerate solution because we have 2 basic variables $=0$! Still at point B

$\begin{aligned}1, \mathrm{x} 2, \mathrm{~s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4) & =\mid(0,5,5,0,0,0) \\ \mathrm{z} & =20\end{aligned}$

2.5	$B:$
0	$(\times 1, \times 2)=(0,5)$

degenerate solution because we have 2 basic variables $=0$!

Still at point B

1, x2,s1,s2, s3, s4) $=\mid(0,5,5,0,0,0)$	
	$\mathrm{z}=20$
2.14286	B:
0	$(x 1, x 2)=(0,5)$
0	degenerate solution because
3	we have 2 basic variables $=0$!

Still at point B

Exercise 12 (cont.)

	z	x1	x2	s1	s2	s3	s4	RHS	$\begin{aligned} 1, x 2, s 1, s 2, s 3, s 4) & =\mid(8.6,1.4,0,0,2.1,3.6) \\ z & =31.428571 \end{aligned}$
Z	1	0	0	2.286	0.143	0	0	31.4	
s3	0	0	0	0.429	-0.286	1	0	2.1	C:
s4	0	0	0	0.714	-0.143	0	1	3.6	$(x 1, x 2)=(8.6,1.4)$

optimal solution!!

Exercise 11

$\max \mathrm{z}=\mathbf{3 x 1}+2 \times 2$
$\begin{array}{llll}Z=15 & 15 & 0 & 7.5\end{array}$

C1	$2 \times 1+$	$1 \times 2=$
	0	9
	4.5	0
C2	$1 \times 1+$	2×2
	0	4.5
	9	0
C3	X1	$=$
	10	0
	0	0

Exercise 12

[^0]: Not all resources were used for constraints 1 and 3 (108 and 10 units of each resource were respectively left unused:

